tilelang.quantize.utils module#
- tilelang.quantize.utils.gen_quant4(k, n, groupsize=-1)#
- tilelang.quantize.utils.general_compress(lowprecision_weight, source_bits=4, storage_dtype=None)#
- tilelang.quantize.utils.interleave_weight(qweight, nbits=4, target_dtype='float16')#
Interleave the weight to the target data type.
- Parameters:
qweight (_type_) – _description_
nbits (int, optional) – _description_. Defaults to 4.
target_dtype (str, optional) – _description_. Defaults to “float16”.
- Returns:
_description_
- Return type:
_type_
Example
qweight = torch.randint(0, 127, (10, 10), dtype=torch.int8).cuda() interleave_weight(qweight, 4, “float16”)